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SUMMARY
The possibility of solving the three-dimensional (3-D) inverse problem of geoelectrics
using the artificial neural network (ANN) approach is investigated. The properties of
a supervised ANN based on the back-propagation scheme with three layers of neurons
are studied, and the ANN architecture is adjusted.

A model class consisting of a dipping dyke in the basement of a two-layer earth
with the dyke in contact with the overburden is used for numerical experiments. Six
macroparameters of the 3-D model, namely the thickness of the top layer, which
coincides with the depth of the dyke (D), the conductivity ratio between the first and
second layers (C1/C2 ), the conductivity contrast of the dyke (C/C2 ), and the width (W ),
length (L ) and dip angle of the dyke (A), are used.

Various groups of magnetotelluric field components and their transformations are
studied in order to estimate the effect of the data type used on the ANN recognition
ability. It is found that use of only the xy- and yx-components of impedance phases
results in reasonable recognition errors for all unknown parameters (D: 0.02 per cent,
C1/C2: 8.4 per cent, C/C2: 26.8 per cent, W : 0.02 per cent, L : 0.02 per cent, A: 0.24 per cent).

The influence of the size and shape of the training data pool (including the ‘gaps in
education’ and ‘no target’ effects) on the recognition properties is studied. Results from
numerous ANN tests demonstrate that the ANN possesses good enough interpolation
and extrapolation abilities if the training data pool contains a sufficient number of
representative data sets.

The effect of noise is estimated by means of mixing the synthetic data with 30, 50
and 100 per cent Gaussian noise. The unusual behaviour of the recognition errors for
some of the model parameters when the data become more noisy (in particular, the
fact that an increase in error is followed by a decrease) indicates that the use of
standard techniques of noise reduction may give an opposite result, so the development
of a special noise treatment methodology is required.

Thus, it is shown that ANN-based recognition can be successfully used for inversion
if the data correspond to the model class familiar to the ANN. No initial guess regarding
the parameters of the 3-D target or 1-D layering is required. The ability of the ANN
to teach itself using real geophysical (not only electromagnetic) data measured at a
given location over a sufficiently long period means that there is the potential to use
this approach for interpreting monitoring data.
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The methods developed for 3-D inversion of MT data by
1 INTRODUCTION

Mackie & Madden (1993) and Spichak et al. (1995) enable the
The successfulness of EM data inversion depends not only underground conductivity distribution to be estimated based
on the quality of the data and the tools used to this end, but on the measured data and a priori information. However, in

also, perhaps to an even greater extent, on the suitability of the spite of the different mathematical formalisms used (conjugate

gradient relaxation and Bayesian statistics, respectively), bothinversion methods for the purposes of the data interpretation.
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16 V. Spichak and I. Popova

of these methods require (as in all other EM inversion of the biological neural system to the non-linear system ‘data–

parameters of the target’ modelled by the ANN (its elementstechniques) that the parameters of a layered section are known
in advance from some other geological or geophysical method. are also called ‘neurons’). In both cases, the system could be

considered as an n-layer network in which every neuron ofThey are also inefficient for multiple inversions of data within

a given class of model (for instance in the monitoring mode) one layer is somehow connected with the neurons of other
layers. A signal arrives at the input layer of neurons fromsince they do not remember a way of inversion already found.

Finally, inversion of very noisy data (if the level of noise is, outside the system, but its magnitude at the neurons of the

other layers depends on the signal magnitudes and connectionfor example, 30, 50 or even 100 per cent, which is often the
case in practice) by these methods may give results that are far weights of all the associated neurons of the previous layer.

Moreover, similar to in biological systems, the net response offrom accurate. Hence, it is important to develop fundamentally

new approaches to the interpretation that will overcome or at an artificial neuron is described by a non-linear function.
Even though the BP technique has become a routineleast reduce the difficulties mentioned above.

Methods of data interpretation based on the analogy with procedure (see, in particular, the references above), it is worth-

while to specify the main elements of the scheme. We use athe function of the human brain’s neural network have proved
to be successful in the solution of inversion (recognition) three-layer ANN (Fig. 1) consisting of a layer of input neurons

(data), a layer of hidden neurons (their number, generallyproblems in many fields of science. A pattern recognition

method, namely the artificial neural network (ANN) technique, speaking, is arbitrary and can be adjusted in order to reflect
the complexity of the system—see Section 4 below), and ahas become especially popular during the last decade. The

following properties of ANNs make their application successful: layer of output neurons (unknown parameters of the geoelectric

structure).
(1) ANNs are very effective for the solution of non-linear

The propagation of the input signal via a network occurs in
problems;

the following way. The input signal x
i

comes to each ith
(2) ANNs can reach conclusions from incomplete and

neuron of the input layer. It is equal to the corresponding
noisy data;

element of the input vector, composed of the values of the
(3) ANNs admit the interpolation and extrapolation of the

measured electromagnetic field (or their transformations) at a
available database;

number of periods. Every kth neuron of a hidden layer receives
(4) ANNs provide a means for the synthesis of separate

a summary input signal yinp
k

from all neurons of the input
series of observations to obtain an integral response, which

layer:
allows a joint interpretation of diverse data obtained by

different geophysical methods; yinp
k

=∑
i

w
ik
x
i
, (1)

(5) ANNs enable simultaneous data processing, thereby
where w

ik
are the connection coefficients (weights) between theessentially reducing the computation time, particularly when

input and hidden layers and the summation is carried out overspecial chips are employed;
all input neurons. The signals yinp

k
are transformed by each kth(6) the time necessary for ANN recognition depends on the

neuron of the hidden layer into the output signals yout
k

bydimension of the space of unknown parameters rather than
the neuron ‘activation functions’ Gh

k
:the physical dimension of the medium, which makes ANNs

particularly promising for the interpretation of 3-D geoelectric
yout
k

=Gh
k
(yinp
k

) . (2)
structures.

The signals then propagate from a hidden layer to the output
An excellent review of ANN paradigms and a detailed

layer and for each jth neuron of the output layer we obtain
analysis of their application to various geophysical problems

u
j
=Gu

j
∑
k

w
kj

yout
k

, (3)is given in Raiche (1991). ANN methods have been used in
geoelectrics for 1-D inversion by Sen et al. (1993), Hidalgo

et al. (1994) and Poulton & Birken (1998), and parameters of
2-D structures have been estimated from synthetic and real
time-domain electromagnetic data by Poulton et al. (1992a,b).

The present paper, developing the ideas formulated in Spichak
(1990), is a first attempt to apply the ANN approach to the
inversion of electromagnetic data in 3-D geoelectric structures.

2 BACK-PROPAGATION SCHEME OF THE
ANN APPLICATION

To solve the inverse problem we use one of the so-called

‘methods of learning with a teacher’, namely the error back-
propagation (BP) technique (Rumelhart et al. 1988; Schmidhuber
1989; Silva & Almeida 1990). Such an approach involves two

stages in the inversion procedure: the training of the network,
and testing, or recognition (the inversion itself ). At the learn-
ing stage, the ‘teacher’ specifies the correspondence between

chosen input and output data, which is similar to the mech-
anism for training a human. The analogy with the human

Figure 1. Three-layer artificial neural network.brain also includes the similarity of some functional elements
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where u
j

are the output signals at the output layer, w
kj

are
3 CREATION OF THE SYNTHETIC

the connection weights between the hidden and output layers,
DATABASE

and Gu
j

are the activation functions for neurons at the output
layer. (The activation functions are usually considered to be In order that the ANN learns the correspondence between

data and desired geoelectric parameters, it is first necessarythe same for each neuron of a given layer. We will show in
Section 4.1 that the individual choice of activation function to formulate the hypothesis on a class of inversion models,

for instance dyke, geothermal reservoir, magma chamber, oiltype for different output neurons may improve the recognition

of some model parameters.) or gas deposit, etc. (Note that we mean only the assumption
on the class of models for which the solution is sought, ratherAt the training stage the actual output signals u

j
are com-

pared with known ‘correct answers’ ut
j
, which correspond to than the considerably more stringent constraints on the para-

meters of 1-D layering and/or target geometry used in thegiven input signals, and a standard error
applications of other inversion methods.) This may be difficult

Er
p
=∑

j
(u
p,j
−ut

p,j
)2 (4) in the general case, if we have no initial guess about the type

of the geoelectrical model to be searched for, but is quite
is calculated for each pth learning sample; here the summation possible in some cases of practical importance. The recognition
is carried out over all neurons of the output layer. In this of crust dykes from surface measurements of the electro-
paper, the term ‘learning sample’ means a pair of ‘calculated magnetic field is an example of such a formulation of the
synthetic EM data or their transforms at a number of periods problem. It is easily parametrized, and the inversion is reduced
and the corresponding set of model parameters’. Such input– to the determination of a few macroparameters of the target
output pairs are defined by the ‘teacher’ and comprise the itself as well as of the host medium.
ANN training sequence. The total error to be minimized is To apply the ANN method, it is necessary to create first

a fairly representative base of models. A 3-D dipping dyke
Er=∑

p
Er

p
, (5) in the bottom layer of a two-layer earth with the dyke in

contact with the overburden (Fig. 2) was considered as a
where the summation is performed over all learning samples. ‘class-generating’ model and used for numerical experiments.

The connection weights w
ik

and w
kj

are the parameters that It is characterized by the following parameters of the dyke
determine the signal propagation through the network and and the host medium: the thickness of the upper layer (H1 );
therefore the final error. BP is actually a gradient descent the conductivity contrast between the two layers (C1/C2 ); the
technique, minimizing the error Er by means of adjusting the conductivity contrast between the dyke and the host layer
connection weights: (C/C2 ); the depth of the upper edge of the dyke (D), its width

(W ), length (L ) and the dip angle in the plane xOz (A). It was
Dw(n)

ij
=−a∂Er/∂w

ij
, (6) assumed for simplicity that the upper boundary of the dyke

always lies at the interface between the first and the second
where Dw(n)

ij
is the increment of the weight matrix at the

layers, so that D=H1 , and that the conductivity of the second
nth step of the iteration process and a is a non-negative

layer is fixed: C2=0.01 S m−1. Thus, six parameters of 3-D
convergence parameter called the learning rate. In order to

geoelectric structure (D (H1 ), W , L , A, C1/C2 and C/C2 ) were
accelerate the process, an inertial term proportional to the

to be reconstructed.
weight change at the previous step (n−1) is often added to

The following grading of unknown parameters was used in
the right-hand side of (6):

the forward modelling: D (H1 )=50, 200 m; C1=0.00333, 0.01

and 0.03 S m−1 ; C2=0.01 S m−1 (fixed); C=0.0002, 0.001,Dw(n)
ij
=−a∂Er/∂w

ij
+bDw(n−1)

ij
, (7)

0.003333, 0.01, 0.02, 0.034, 0.06, 0.1, 0.17, 0.3 and 0.5 S m−1 ;
where b (0≤b≤1) is the inertial coefficient called the ‘learning W =16.65, 25, 50, 66.6, 100 and 200 m; L =16.65, 25, 50, 66.6,
momentum’. The momentum can speed up training in very 83.25, 100, 125, 200, 250, 330, 500 and 1000 m; A=0° (180°),
flat regions of the error surface and suppresses the weight
oscillations in steep valleys or ravines (Schiffman et al. 1992).

Learning starts with small random values of the weights.
The input signal comes via the network to the output. The
output signal of the output layer is then compared with the

desired value and the misfit is calculated. If it exceeds a pre-
determined small number, the signal propagates back through

the network to the input, and so on. This procedure is repeated
for the whole learning pool and ends when a user-specified
threshold value Eps (Er<Eps), known as a ‘teaching precision’,

is reached.
The testing process uses the ANN interpolation and extra-

polation properties. Unlike the training procedure, which

requires many transits of the signal back and forth through the
network, the recognition procedure requires only one passage
of the recognizable signal from the input to output layer and

uses the connection weights specified at the learning stage. The
final set of output values can be treated as a result of the Figure 2. Cross-section of a 3-D model containing a dyke buried in

the second layer of a two-layer earth.testing data inversion in a given model class.
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45°, 66°, 90°, 114° and 135°. Note that, due to restrictions Ntest is the number of testing data sets;

min( j), max( j) are the minimum and maximum values ofon computation time, not all possible combinations of the
parameter values mentioned above were used for the creation the jth parameter in the teaching pool, respectively;

neural (n, j) is the recognition result for the jth parameter inof the synthetic database. In particular, the total number of

calculations was decreased by conditions such as D/W =1, 2, 3; the nth testing sample; and
target (n, j) is the target value of the jth parameter in theL /W=1, 5; ‘basic’ values of the conductivity contrast C/C2=2,

10, 50; and so on. nth testing sample.

In order to create a synthetic database the software package
In order to estimate the quality of the ANN inversion ofFDM3D (Spichak 1983) was used, which has proved to be

the synthetic data (when the true result is known in advance)efficient in the solution of forward and inverse 3-D geoelectric
we calculated for each jth unknown parameter the relativeproblems (Zhdanov & Spichak 1992; Spichak 1999). All calcu-
error averaged over all testing samples:lations were carried out for two primary field polarizations

within the period range typical for audiomagnetotellurics:
Err

j
=

1

Ntest
∑
n

|target
n,j
−neural

n,j
|

target
n,j

100 per cent . (10)T =0.000333, 0.001, 0.00333, 0.01, 0.0333, and 0.1 s. Note
that, due to the well-known electrodynamic similitude relation
(Stratton 1941)

4.1 Types of activation function at the hidden and output
wsL 2=inn , (8) layers

where v is the frequency, s is the electrical conductivity, and L Since the type of activation function used is crucially important
is the geometrical scale, the same synthetic database could be for a proper simulation of the behaviour of a real system, some
used for ANN inversion in other period ranges and geometrical experiments are made before using ANN to interpret real
parameter scales satisfying (8). data. In spite of the fact that any monotonically increasing

and continuously differentiable function can be used as an
activation function for BP-type networks, the most commonly
used ones are sigmoidal functions: hyperbolic tangent,4 ANN ARCHITECTURE

Since ANN architecture is of great importance for the
G(z)=

1

2
(1+tanh z)=

1

2 A1+ ez−e−z
ez+e−zB= 1

1+e−2zrecognition of the model parameters, a comprehensive study

was carried out aimed at finding the appropriate values of the
following parameters of the ANN: types of activation function and ‘logistic’,
for hidden and output layers as well as for neurons at the

output layer; number of neurons in a hidden layer; and the G(z)=
1

1+e−z .
effect of a second hidden layer. Finally, a teaching precision
was estimated which enabled reasonable inversion results to

Their derivatives G∞(z)=G(z)[1−G(z)] have a Gaussian
be obtained.

shape that helps stabilize the network and compensate for
In order to reduce computation time (without loss of

over-correction of the weights (Caudill 1988).
generality), the database used in these experiments was smaller

ANN interpolates the parameters of the model using these
than the total one: only 90 synthetic data sets randomly

activation functions quite satisfactorily, but it completely fails
selected from the total database were used for teaching, while

to extrapolate their values because the neural output for
10 were randomly selected for testing. The ANN architecture

logistic and hyperbolic tangent functions lies in the interval
in this experiment was as follows: the input layer consisted of

[0, 1]. No values outwith this interval are achievable, so no
80 neurons, the hidden layer consisted of 20 neurons, while

real extrapolation can be carried out.
the output layer consisted of six neurons, corresponding to the

The simplest way to overcome this difficulty probably
six model parameters to be recognized. The threshold level

consists of using the linear activation function at the output
(Eps) for rms errors in teaching was equal to 0.0075. The

layer. Comparative testing of neural networks with linear and
learning rate was equal to 0.01 and the momentum to 0.9. In

hyperbolic tangent activation functions has revealed that net-
the process of teaching, the rms errors were used to estimate

works with non-linear outputs extrapolated low values of the
the misfits between the calculated and ‘true’ responses, so the

conductivities reasonably well but failed in the extrapolation
total error for the test set for all parameters was determined

of high conductivities, and, contrariwise, networks with linear
as follows:

outputs extrapolated high values of the target conductivity
reasonably well but failed in the extrapolation of low values.

Err=C 1

NtestNpar
∑
n,j

err2
n,jD1/2 , (9) Based on this preliminary experience, we compared the effects

of the following two types of activation function for the neurons
at the output layer:

where

Glin (x)=0.5(1+x) ( linear function) , (11)
err(n, j)=[target (n, j)−neural (n, j)]/[max( j)−min( j)]

( j=1, … , Npar ; n=1, … , Ntest); Glin (x)=0.5G1+tanh x, x<0

(1+x), x>0
(mixed function) . (12)j is the number of the neuron in the output layer corresponding

to the jth model parameter;
n is the number of the tested sample; The ANN we used for experiments had the same type of

activation function at each neuron of the hidden or outputNpar is the number of output neurons (=6);
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layer, so, in order to estimate the effects of diVerent activation of hidden layers and hidden neurons are usually found by

trial-and-error techniques (Baum et al. 1989; Kung et al. 1988;functions, we had to teach six ANNs independently, each
having only one output neuron, corresponding to the Soulie et al. 1987).

We studied the effect of the number of neurons in a hiddenappropriate model parameter. All neurons in the hidden layers

had the same mixed activation function, while each (single!) layer on the accuracy of the recognition of model parameters
by means of testing the data sets used in the previous section.output neuron of the appropriate ANN had an activation

function depending on the nature of the corresponding model The ANN architecture was 80–Nh–6, where Nh is the number

of neurons in a hidden layer. The values of Nh were assignedparameter: linear (11) or mixed (12) for the dimensional
parameters (D, W , L ) of the model, and only mixed for the as follows: 10, 20, 30, 40, 50. The teaching precision was equal

to 0.0075.conductivity contrasts (C/C2 , C1/C2 ) and dip angle (A).

Table 1 gives the recognition results for two types of Fig. 3 shows the dependence of the accuracy of the model
parameter recognition (in terms of relative errors averaged overactivation function and two ways of teaching/testing mentioned

above: (1) six ANNs, three of them having ‘linear’, and three all testing data sets and appropriate bars, both in per cent) on

the number of neurons in a hidden layer. In Fig. 3 and‘mixed’ activation functions; (2) six ANNs, all ‘mixed’; and
(3) one ANN, ‘mixed’. (Hereafter, average relative errors subsequent figures (unless stated otherwise) (a) shows the

depth of the dyke and thickness of the upper layer (D (H1 )),and their bars (in per cent) are placed in round brackets and

separated by a comma for all model parameters). (b) shows the conductivity contrast of the upper layer (C1/C2 ),
(c) shows the width (W ) of the dyke, (d) shows the conductivityIt could be concluded from the comparison of the first two

rows of Table 1 that, under the condition that the activation contrast of the dyke (C/C2 ), (e) shows the length (L ), and

(f ) shows the dip angle (A).function at the output layer has a linear part, the recognition
errors for all parameters are reasonable and are practically It is seen from Fig. 3 that the relative errors for four

parameters (D, W , L and C1/C2 ) are generally less than 3–4independent of the type of activation function used. The errors

even decrease slightly (though by less than 2.8 per cent except per cent, while the maximum relative errors for C/C2 and A
are around 14 per cent. The total average error for all sixfor C/C2 ) if all model parameters are reconstructed by the

same ANN taught to be able to recognize all model parameters parameters ranges from 3.9 to 5.5 per cent. In spite of the fact
that the recognition errors are not very sensitive to the number(third row). It is important to note, however, that, in spite

of the fact that the total time of teaching in the latter case is of neurons in a hidden layer, the minimal total error is

achieved at Nh=40. It is worthwhile to note that, for allmuch less than in the former, the best recognition accuracy
for the dyke conductivity contrast C/C2 is achieved if this para- values of Nh, the standard deviations of the relative errors for

W , L and C1/C2 were fairly small (<5 per cent), while theymeter is recognized independently (in a ‘partial solution’ mode)

by an ANN having only one output neuron and taught in an reached 15 per cent for C/C2 and A. This result indicates that
the reconstruction of the dyke’s depth, conductivity contrastappropriate way. In the latter case, the relative error may

decrease by 10 per cent (from 33.2 per cent to 23.6 per cent). and angle is a less stable procedure than the recognition of

other unknown parameters.

4.2 Number of neurons in a hidden layer
4.3 Effect of a second hidden layer

Unfortunately, there is no general theory on the dependence
of the recognition errors on the number of neurons in a hidden In order to estimate whether two hidden layers are better than

one, a second hidden layer was incorporated into the ANN.layer. However, the approximation properties of an ANN are

improved when the number of hidden neurons increases. In Based on the results of the previous experiments, the number
of neurons in the first hidden layer was fixed at Nh=40, whileparticular, Yoshifusa (1992) has proved that a non-linear

perceptron with one hidden layer can approximate any con- the number of neurons in the second one varied. The new

ANN architecture was 80–40–Nh(2)–6, where Nh(2) wastinuous function with a given precision if the number of hidden
neurons tends to infinity. successively equal to 10, 20, 30 and 60.

Fig. 4 shows the results of the recognition of model para-The recognition ability of an ANN increases when the

number of hidden neurons increases if it is dealing with familiar meters compared with the case when the ANN consists of
only one hidden layer with the optimal number of neuronsdata (in particular, those used for training). On the other hand,

it may decrease if the ANN is dealing with unknown testing [Nh(1)=40, Nh(2)=0]. The total average error is minimal

(4.3 per cent) when Nh(2)=0 and is maximal if Nh(2)=60data, because in the general case its recognition ability (called
the ‘generalization property’) depends in a complex way on (mean value equals 7.7 per cent). The relative error graphs do

not change significantly in comparison with the case of onlyits architecture (number of hidden layers, number of neurons,
type of activation function, etc.), and the volume and structure one hidden layer (Fig. 3). Thus, it can be concluded that the

architecture of the ANN is quite adequate for the complexityof the training data pool, etc. Therefore, the optimal numbers

Table 1. The results (in terms of averaged relative errors and bars, both in per cent) of the model

parameter recognition for two types of activation function and two ways of testing.

N D C1/C2 W L A C/C2

1 (5.5, 16.3) (11.8, 16.8) (5.5, 16.3) (4.8, 14.5) (7.3, 12.1) (23.6, 24.7)

2 (6.7, 14.6) (11.8, 16.8) (6.7, 14.6) (5.4, 13.0) (7.3, 12.1) (23.6, 24.7)

3 (4.9, 16.1) (9.0, 15.4) (4.9, 16.1) (4.3, 14.4) (7.1, 7.9) (33.2, 35.3)

© 2000 RAS, GJI 142, 15–26



20 V. Spichak and I. Popova

Figure 4. The dependence of the recognition errors on the number of

neurons in a second hidden layer (Nh (2)).
Figure 3. The dependence of the recognition errors on the number of

neurons in a hidden layer (Nh). Here and in the following figures

(except Fig. 7), (a) is the depth of the dyke (D), (b) is the conductivity

ratio between the upper and second layers (C1/C2 ), (c) is the width of 5 EFFECT OF THE INPUT DATA TYPE
the dyke (W ), (d) is the conductivity contrast of the dyke (C/C2), (e) is

the length of the dyke (L ), and (f ) is the dip angle of the dyke (A). The results of ANN-based parameter recognition depend on

the data type used (both for teaching and inversion itself ), the
volume and structure of the teaching data pool, etc. In order
to estimate the effect of data type on the results of inversion,

of the problem considered; so, addition of the second hidden the following five types of input data were studied:
layer has a very similar effect to increasing the total number

(1) normalized components of electrical and magnetic fields:of neurons in intermediate layers, the total number Nh=40 in
( |E

y,x
|−En

y,x
| )/|En

y,x
|, ( |H

x,y
|−|Hn

x,y
|)/|Hn

x,y
|;all hidden layers being the optimal value.

(2) components of not normalized electrical field parallel to
the polarization of the primary field (ReE

x,y
, ImE

x,y
);

4.4 Threshold level (3) only apparent resistivities ra
xy

, ra
yx

;

(4) apparent resistivities ra
xy

, ra
yx

and phases Q
xy

, Q
yx

of
To select the optimal value of the teaching precision (Eps)

impedance;
the parameters of the model were reconstructed using ANNs

(5) only phases Q
xy

, Q
yx

of impedance.
having the same architecture, but taught using different values
of the stopping criterion Eps (0.005, 0.0075, 0.01, 0.02, 0.05). Table 2 shows the recognition results for the five groups

enumerated above.Fig. 5 shows the dependence of the relative recognition errors
and their bars (in per cent) on the threshold value Eps It is seen from Table 2 that the recognition of the dimensional

parameters (D, W and L ) is carried out with errors of less than(the horizontal axis has log10Eps in inverse order). It is seen

that the average errors and bars for all model parameters 0.5 per cent irrespective of the type of input data used. The
dip angle (A) is determined fairly well (the maximum error of(besides the dip angle of the dyke) sharply decrease when Eps

tends to zero and stabilize when it becomes less than 0.01. 4.14 per cent corresponds to using only apparent resistivities,
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Thus, we conclude that: first, the conductivity contrasts are

determined worse than other model parameters; second, the
recognition errors of the dimensional parameters (D, L and W )
are virtually independent of the data type, while the conductivity

contrasts (especially of the dyke) are essentially dependent; and
third, the phases of impedance could be used to determine not
only the geometrical parameters, but also the conductivity

distribution. The latter conclusion enables us to reduce (at least
by a factor of two in comparison with the routinely used two
components of apparent resistivity and two components of the

impedance phase) the volume of data required for EM data
inversion in 3-D media.

6 EFFECT OF THE VOLUME AND
STRUCTURE OF THE TRAINING DATA
POOL

6.1 Effect of size

The dependence of the accuracy of the model parameter
recognition on the number of data sets in the teaching database
was studied. In total, 120 data sets were used in these experi-

ments: 12 of them were used for testing, while the remaining
108 samples were used for teaching. Synthetic electrical and

magnetic fields were, in accordance with the results of the
previous section, first transformed to the apparent resistivities
and phases. In order to reduce the huge volume of data being

processed during the teaching, the data were compressed by
2-D FFT (using the first five pairs of sine and cosine
coefficients). Thus, the total number of input neurons in the

network was N=10NtrNT , where Ntr is the number of field
or transformation components used for the inversion, and NT
is the number of periods. 2-D FFT of the data was carried out

on a 32×32 grid for each period. The testing data sets were
not changed during this experiment, while the data sets used
for teaching were selected from the remaining data sets inFigure 5. The dependence of the recognition errors on the rms error
a random way to make their number successively equal toachieved in the teaching process (Eps).
54 (50 per cent of the total database), 65 (60 per cent), 76
(70 per cent), 86 (80 per cent), 92 (85 per cent), 97 (90 per cent),

103 (95 per cent). The results of the parameter recognitionTable 2. Relative errors (in per cent) of parameter recognition for five
are shown in Fig. 6. It is seen that the average errors for alltypes of input data.

parameters decrease with increasing number of data sets used
N D C1/C2 W L A C/C2 for teaching, and stabilize (the bars for almost all parameter

errors decrease) when the size of the training database becomes
1 0.10 3.84 0.10 0.13 0.41 40.77 about 90–100. Thus, an increase of the teaching database
2 0.13 7.20 0.15 0.17 1.77 67.71

size up to 90–100 data sets may improve both the accuracy
3 0.04 3.28 0.05 0.04 4.14 39.05

and robustness of the recognition of all model parameters.
4 0.27 4.14 0.40 0.43 1.63 24.45

The latter point is very important from the point of view of5 0.02 8.43 0.02 0.02 0.24 26.81
interpretation of a single data set, which is usually the case
in practice.

and the minimum corresponds to the case when only
6.2 Effect of structure

impedance phases are used). The errors of the conductivity

contrast (C1/C2) estimation are larger, ranging from 3.28 to 8.43 It could have been expected that the larger the volume of the
training database, the better the results of unknown parameterper cent. They are maximal (in contrast to the previous case)

when only impedance phases are used, and minimal when only recognition; however, the effect of the database structure is

much less clear. It has been studied in two different ways: first,apparent resistivities are used. Finally, the dyke conductivity
contrast (C/C2 ) recognition errors are the largest and vary the effect of the random selection of the training data sets from

the database was estimated; second, the influence of the ‘gaps’from 24.45 per cent (apparent resistivities and phases) up to

67.71 per cent (electrical fields only). On average, groups 4 in the database used for teaching was studied. In both cases,
the testing data set was not changed and consisted of the same(apparent resistivities and phases) and 5 (phases only) give the

best recognition results for all dyke parameters searched for. 12 data sets as in the previous section.
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while the error of the dyke conductivity contrast (C/C2 )
recognition is the largest], and do not depend on the random

selection of the data sets in the training database. Thus, a

random selection of the data sets used for training hardly

affects the results of the recognition. This implies that even a

database consisting of only 97 data sets is of good enough

‘quality’ for teaching the ANN to recognize the model

parameters.

6.2.2 Gaps in the training database

It is important to estimate the effect of gaps in the database

on the recognition errors. In order to study this, the training

database was artificially ‘damaged’ (decrease in the number of

teaching values) separately for each model parameter.

6.2.2.1 L ack of data in each of the model parameters. In order

to estimate the effects of gaps in the teaching data pool on the

recognition abilities of the ANN, the following experiments for

four characteristic model parameters (A, D, C1/C2 , C/C2 ) were

carried out. The teaching data pool was successively ‘damaged’

by deleting all possible data sets for one of the parameter

values (A=66, C1/C2=0.333, D=50 m, C/C2=3.4) from the

teaching data. In each experiment two testing data pools were

used: one (unchanged in all experiments) consisting of 12

reference data sets randomly selected from the total database,

and the second consisting of those data sets that had been

deleted from the teaching data.

The architecture of the ANN was the same as in the previous

sections, except for the type of activation function at the output

layer. Tables 4 and 5 give the results of the model parameter

recognition for two types of output activation function—linear

and mixed, respectively—when the testing data pool consists
Figure 6. The dependence of the recognition errors on the number of of the 12 reference data sets mentioned above. The last rows
synthetic data sets (N ) used for teaching the ANN.

in both Tables contain, for comparison, the recognition errors

for the case when no artificial gaps are created in the teaching

data pool.
6.2.1 Random selection of synthetic data samples Similarly, Tables 6 and 7 give the results of the model

parameter recognition for two types of output activationIn order to estimate the effect of a random selection of the
function—linear and mixed, respectively—when the testing datatraining data sets, the teaching was carried out using 97 data
pool consists of data sets removed from the teaching data pool.sets randomly selected from the database. The architecture of

Analysis of Tables 4, 5, 6 and 7 results in the followingthe ANN was the same as above. The results of the model
conclusions:parameter recognition for five different random formations of

the training data sets are given in Table 3. (1) When using a ‘damaged’ training data pool, recognition
Table 3 indicates that for each model parameter both the errors depend on the type of output activation function [in

errors and their bars are quite reasonable [the errors of the contrast to the case of ‘homogeneous’ training data (Table 1)].
dyke width (W ) and length (L ) recognition are the smallest, The mixed function is preferable for determining the con-

ductivities and dip angle, while the linear function gives better

results for dimensional parameters. It enables us to decreaseTable 3. The model parameter recognition errors and bars (in per cent)
the recognition errors of C/C2 , even if the grading of C1/C2for five randomly selected teaching data pools.
and A in the training database is insufficient.

(2) A lack of training data sets in C1/C2 is more crucial forN D C1/C2 W L A C/C2
the recognition of C/C2 than the lack of values of C/C2 itself.

1 (2.2, 1.3) (2.6, 2.7) (1.0, 0.7) (1.3, 0.8) (3.3, 2.5) (7.1, 7.3) (3) A lack of training data sets in dip angle A affects the
2 (4.6, 4.6) (3.4, 2.7) (1.7, 2.1) (1.3, 1.5) (4.9, 3.3) (8.8, 9.8) recognition error of D even more than the recognition error
3 (4.5, 6.8) (5.4, 6.2) (2.5, 2.3) (2.3, 1.9) (5.5, 4.6) (10.3, 11.6)

of A itself.
4 (4.9, 5.6) (2.8, 2.3) (1.4, 1.6) (1.1, 1.2) (5.7, 8.3) (11.3, 10.7)

(4) The largest recognition errors of all model parameters
5 (4.9, 5.6) (2.6, 3.1) (2.0, 3.9) (1.4, 2.0) (3.7, 2.3) (12.0, 8.7)

occur if the number of data sets is insufficient in D. On the
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Table 4. Effect of the gaps in the training data sets on the results of testing 12 reference data

sets (in the case of a linear output activation function).

Errors in: D C1/C2 W L A C/C2

A (70, 125) (10, 17) (44, 106) (30, 71) (17, 25) (56, 87)

C1/C2 (23, 61) (36, 52) (2.4, 3.2) (1.6, 1.4) (10, 19) (179, 388)

D (136, 161) (33, 65) (88, 131) (58, 86) (16, 23) (33, 39)

C/C2 (5.1, 6.1) (3.6, 3.4) (4.9, 10) (4.6, 9.5) (7.8, 9.1) (23, 23)

No gaps (3.2, 8.2) (4.3, 5.1) (1.9, 2.1) (1.9, 2.3) (4.1, 3.2) (23, 17)

Table 5. Effect of the gaps in the training data sets on the results of testing 12 reference data

sets (in the case of a mixed output activation function).

Errors in: D C1/C2 W L A C/C2

A (67, 149) (9, 13) (48, 127) (34, 87) (14, 21) (29, 32)

C1/C2 (19, 26) (67, 98) (8, 12) (8, 13) (12, 20) (37, 35)

D (149, 197) (16, 24) (84, 149) (58, 100) (18, 29) (32, 32)

C/C2 (8, 16) (4, 5) (6, 15) (6, 16) (8, 16) (17, 14)

No gaps (8.7, 11.4) (5.9, 6.0) (2.2, 3.2) (2.1, 2.9) (4.7, 5.3) (23, 31)

Table 6. Effect of the gaps in the training data sets on the results of testing deleted data sets

(in the case of a linear output activation function).

Errors in: D C1/C2 W L A C/C2

A (127, 153) (6, 10) (117, 152) (80, 103) (41, 32) (58, 60)

C1/C2 (22, 40) (104, 16) (6, 8) (7, 7) (32, 31) (297, 492)

D (261, 145) (69, 80) (219, 102) (152, 63) (45, 43) (80, 66)

C/C2 (35, 74) (12, 34) (32, 37) (30, 34) (28, 46) (59, 53)

Table 7. Effect of the gaps in the training data sets on the results of testing deleted data sets

(in the case of a mixed output activation function).

Errors in: D C1/C2 W L A C/C2

A (178, 246) (9, 13) (142, 181) (100, 122) (34, 24) (29, 25)

C1/C2 (56, 31) (200, 0.3) (19, 20) (15, 18) (21, 22) (89, 72)

D (320, 202) (28, 19) (221, 129) (155, 82) (46, 35) (66, 19)

C/C2 (31, 31) (6.0, 7.8) (36, 28) (34, 29) (32, 24) (27, 25)

other hand, the smallest errors occur when the number of data 12 data sets corresponding to the ‘no dyke’ case were
randomly selected from the total database and then successivelysets corresponding to C/C2 is close to other parameters’
shared by teaching and testing data pools as follows: 4/8, 6/6,grading.
8/4 and 10/2. Thus, the teaching data pool included 4, 6, 8

Thus, it could be concluded that, in order to obtain good and finally 10 data sets corresponding to the absence of the
results of ANN recognition, the numbers of the intervals dyke, while the testing data consisted only of the ‘no dyke’
(grading) in each parameter in the training data pool should data sets (8, 6, 4 and 2, in turn). The ANN architecture was
be close to each other. Since it is often difficult to follow this the same as in the previous sections.
recommendation in practice, it is generally better to use The model parameter recognition errors and their bars
different types of activation function for two groups of para- versus the number N of the ‘no dyke’ data sets in the training
meters: mixed for essentially ‘non-linear’ parameters (C/C2 , data pool are given in Fig. 7 [(a) D (H1 ), (b) C1/C2 , (c) C/C2 ,C1/C2 and A), and linear for dimensional ones (D, W and L ). (d) total average relative error].

Fig. 7 shows that the average errors and bars for the model
parameters sharply decrease if the number of the ‘no dyke’

6.2.2.2 ‘No dyke’ case. It is also important to estimate the data sets in the teaching data pool increases. The recognition
ability of the ANN to recognize situations where there is no errors of the upper layer parameters (C1/C2 and H1 ) manifest
anomalous body embedded in the layered earth. To this end, similar behaviour: they become quite reasonable if the number
the dependence of the ‘no dyke’ recognition on the number of of ‘no dyke’ data sets included in the teaching data pool is at
corresponding synthetic data sets in the training data pool least 8 (6.7 per cent of the total number of the teaching data

sets used).was studied.
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7 EXTRAPOLATION ABILITY OF ANNS

As was mentioned above, the most important abilities of ANNs
consist of interpolation and extrapolation of the parameter

values. The testing carried out in the previous sections has
demonstrated the good interpolation ability of ANNs. Special
tests were made in order to estimate the extrapolation pro-

perties with respect to the dyke’s depth (D), dip angle (A),
length (L ) and the conductivity contrast (C/C2 ). Appropriate
model parameter values to be recognized from extrapolation

were first of all removed, if they existed, from the teaching
data pool. If necessary, all data sets corresponding to smaller
or larger values of the parameter considered were also removed.

Based on the results obtained in Section 5, the recognition
(inversion) was carried out based on xy and yx components
of the apparent resistivities and the impedance phases.

Tables 10, 11 and 12 show the extrapolation abilities of the
ANN with respect to the dyke depth (D) (Table 10), dip angle
(A) (Table 11) and conductivity contrast (C/C2 ) (Table 12).

Tables 10 and 11 demonstrate adequate results for extra-
polation in D and A. The recognition errors for these para-
meters equal 22.8 and 19.7 per cent, respectively, each of them

being underestimated. However, it is worthwhile to mention
that extrapolation in D results in a rather large error in C/C2Figure 7. The dependence of the recognition errors on the number of (51 per cent), which could be explained by relatively sparse

synthetic data sets, corresponding to ‘no fault’ models (N ), in the grading in D and, vice versa, dense grading in C/C2 in the
teaching data pool: (a) D (H1), (b) C1/C2 , (c) C/C2 , (d) total average teaching data pool (see Section 6.2.2.1).
relative error.

Table 12 shows the results of extrapolation in conductivity
contrast of the dyke (C/C2 ). The recognition of the con-
ductivity contrast as well as of other parameters in this test isOn the other hand, even if the number of ‘no dyke’ data
quite reasonable. A similar test of the extrapolation abilitiessets in the training data pool further increases the relative
of the ANN in C/C2 (C/C2=50, while values of other para-error of the conductivity contrast C/C2 , recognition remains
meters vary) shows that the results are very little affected byat the level of 50 per cent (Fig. 7c), which is evidently not
the location of the point selected for extrapolation regarding thesufficient for the classification of such inversion results as
parameter space used for teaching. Thus, we can conclude that‘absence of dyke’. This situation could probably be improved
an ANN with good interpolation and extrapolation propertiesby further increasing the proportion of appropriate data sets
is created.in the total data pool used for teaching the ANN. Fortunately,

in all experiments (see Tables 8 and 9 for test examples) the

resulting values of the dyke width (W ) and length (L ) were Table 10. The recognition results for extrapolation in D.
close to zero, so, even if other parameters (in particular the

D (m) C1/C2 W (m) L (m) A (°) C/C2dyke conductivity contrast C/C2 ) do not indicate the ‘absence
of the dyke’, these two conditions could be used as reliable

Target 300 1.00 200 200 66.00 10indicators of such a situation.
Result 230 1.00 220 170 67.34 4.9

Err (per cent) 22.8 0.0 10.9 12.4 2.0 51
Table 8. The recognition results for the ‘no dyke’ case when the host

medium is homogeneous (C1/C2=1).

Table 11. The recognition results for extrapolation in A.
D (m) C1/C2 W (m) L (m) A (°) C/C2

D (m) C1/C2 W (m) L (m) A (°) C/C2Target 0.0 1.00 0.0 0.0 0.00 1.00

Result 0.0 1.98 0.0 0.0 3.21 0.59 Target 200 0.333 200 150 135.0 50
Err (per cent) 0.0 1.7 0.0 0.0 0.0 40.2 Result 190 0.334 190 140 108.4 46.7

Err (per cent) 2.3 0.35 2.3 2.1 19.7 6.6

Table 9. The recognition results for the ‘no dyke’ case when the host

Table 12. The recognition results for extrapolation in C/C2 .consists of two layers (C1/C2=3).

D (m) C1/C2 W (m) L (m) A (°) C/C2 D (m) C1/C2 W (m) L (m) A (°) C/C2

Target 50 3.0 50 50 66.0 50.0Target 50 3.00 0.0 0.0 0.00 1.00

Result 40 3.00 0.0 0.0 0.53 1.53 Result 50.1 2.82 50.1 50.1 59.9 37.1

Err (per cent) 0.2 6.0 0.2 0.2 9.2 25.9Err (per cent) 4.2 0.1 0.0 0.0 0.0 53.9
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However, the situation changes dramatically if some artificial appropriate values of its parameters were found. The results

noise is added to the synthetic testing data. Fig. 8 shows the of studies aimed at improving the performance characteristics of
extrapolation recognition results when synthetic data are mixed the ANN as well as at increasing the recognition reliability
with 30, 50, and 100 per cent Gaussian noise. In spite of the and accuracy are as follows: one hidden layer is quite sufficient,
fact that the recognition errors for all parameters averaged the preferred number of hidden neurons being about 40; the
over all testing samples generally increase when the noise level threshold value used for teaching should be less than 0.01;
in the data increases, in some cases their behaviour is quite the best activation function for the hidden layer is mixed, while
unusual. In particular, the recognition errors for dip angle and for the output layer it is linear for dimensional parameters
the dyke conductivity contrast often diminish when the noise of the model and mixed for conductivity contrasts and the
level increases, which results in ‘plateaus’ in averaged errors dip angle.
graphs, clearly seen in Fig. 8. This, in turn, means that the (3) The resolving power of different MT data trans-
routine methods of data noise reduction may not necessarily formations was estimated. The best recognition results (among
lead to an improvement of the ANN-based inversion results. the transforms considered) were achieved in the case of the simul-
A special study of this problem is to be carried out taneous use of the apparent resistivity (xy and yx components)

and phases of impedance, and also in the case of using only

phases. The latter circumstance enables, in turn, the volume of8 RESULTS
data required for reliable inversion to be decreased. Moreover,

The following results have been obtained. it is worthwhile to note that use of phases only may result in

even lower recognition errors for the dimensional parameters(1) A 3-D geoelectrical model of a typical dyke zone was
searched for.used to create a synthetic MT database for the frequency range

(4) It was found that the volume of the teaching data pooltypical for audiomagnetotelluric studies. It was used further
sufficient for good enough recognition of six model parametersfor forming both the training and testing data pools for ANN
is about 100 data sets. Although the method of data setrecognition of the model parameters.
selection hardly affects the recognition errors, the ‘damaged’(2) The properties of the supervised ANN (based on using
structure of the teaching data pool may significantly affect thethe back-propagation scheme) were investigated and the most
results of the recognition (even if the number of training data

sets used is sufficient). In particular, gaps in the training

data pool increase the errors of the parameter recognition

(in a complicated way). It turns that, in order to obtain reliable

results of ANN recognition, the numbers of intervals in each

parameter grading during the creation of the training data

pool should be as close to each other as possible. In other

words, the teaching data pool should not be ‘skewed’ either

due to insufficient grading of some parameter in comparison

to others (which might be expected) or due to its extra dense

division. Since it is often difficult to follow this recommendation

in practice, it is generally better to use different types of

activation function for two groups of parameters: mixed for

essentially ‘non-linear’ parameters (C/C2 , C1/C2 and A), and

linear for dimensional ones (D, W and L ).

(5) Reliable recognition of macroparameters implies the

ability to classify situations when there is no target embedded

in the layered earth. Since the recognition errors (especially

for conductivity contrast and dip angle) are not usually equal

to zero even in numerical experiments, it is unlikely that

the theoretical ‘necessary’ and ‘sufficient’ conditions of such

classification will be useful in practice. It was found that

inclusion of ‘no target’ data sets in the teaching data pool

(about 10 per cent of the total volume) enables the ANN to

reliably recognize the absence of the target: equality to zero of

the target dimensional parameters (except the depth, which is

by definition equal to the first layer thickness) could be

considered as good indicators for such a classification.

(6) The recognition quality becomes worse when artificial

(Gaussian) noise is added to the synthetic testing data. The

non-monotonic increase of the recognition errors for the dyke

conductivity contrast (C/C2 ) and dip angle (A), as the level of

noise increases up to 100 per cent, indicates that standard

methods of noise reduction may not work in ANN-based inver-

sion, so development of a special noise treatment methodologyFigure 8. The effect of the noise level (Noise) in the testing data on

the recognition errors for Test 3. is required (Spichak 1999; Spichak et al. 1999).
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